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Acoustic Spinning-Mode Analysis by an
Iterative Threshold Method

Daniel Blacodon*
ONERA, 92322 Chitillon, France

Spinning-mode analysis methods are commonly used for studying the spatial structure of the acoustic field
inside ducts. In some applications, the background noise is very high, so that the acoustic modes may be
overwhelmed by spurious modes in the modal spectra. The problem may be solved by methods that greatly
reduce the background noise. Four methods studied in a previous work are briefly summarized in this article.
The method providing the best reduction of the background noise is inaccurate in certain cases. An iterative
threshold technique is proposed to eliminate this drawback. It is compared to the four other methods using
numerical simulations and mode measurements in the nozzle of a Turbomeca TM333 turboshaft engine.

Nomenclature
f = frequency
G; = gain in signal to noise ratio of method
i = 10 1og[(S/N)u/(S/N)in]
I = unit matrix
Im[w(f, m)] = imaginary part of (f, m)
J = number of microphones

L = number of data blocks

M, = set of noise modes

M, = set of acoustic modes, signal

m = angular wave number of spinning mode
order

N(f. 6) = frequency Fourier transform
of n(z, 6)

n(t, 6) = background noise

Re[w(f, m)] = real part of o(f, m)

S(f. 6) = frequency Fourier transform
of s(z, 9)

s(t, 0) = acoustic pressure, signal

T min = the smallest power spectral density on a
noise mode

Tr(I'(f))] = trace of matrix I'(f)

t = time

Y(f. 6) = frequency Fourier transform of y(z, 6)

y(t, 6) = time history of acoustic pressure (signal +
noise) measured by a microphone at
angle 8

I (f) = cross-spectral matrix of N(f, 6)

Ii(f) = cross-spectral matrix of S(f, 6)

Iy (f) = cross-spectral matrix of Y(f, 6),
see Eq. (3)

6 = Kronecker symbol

0 = angle

6, = location angle of microphone
jl=2=¢G - DILj=12,...,J

a(f) = noise power spectral density

D.(f. m) = wave number spectrum at frequency f by
method §

w(f. m) = angular Fourier transform of Y(f, 0)

: = complex conjugate

+ = transposed complex conjugate
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I. Introduction

HE spinning mode analysis of an acoustic field is a pow-

erful means for getting a better understanding of noise
sources in turboshaft engines. It is also the main information
needed to predict the far-field directivity radiated from the
inlet or nozzle. A spinning mode is defined by two integer
numbers, the angular wave number 1, and the radial index.
The article focuses on the angular wave number spectrum for
two reasons:

1) Only the values of m are determined by the symmetries
of the sources, sound radiation can be reduced by acting on
them by generating decaying acoustic wave in the duct.

2) The application shown in 1 deals with transonic turbines.
In this case, a shaft-rotation harmonic is dominated by the
value of m equal to the harmonic order, and only the first
radial mode can generally propagate.

Angular wave number spectra (spinning mode distribu-
tions) have been measured for several years in turbofan en-
gines using a rotating microphone along with a fixed micro-
phone that provided a phase reference.! * This kind of device
cannot usually be fitted in turboshaft engines because of their
small size and also because the duct cross section may not be
perfectly circular. Another approach uses an array of fixed
microphones around the duct. However, two main difficulties
appear with this technique. The first limitation is due to the
spatial sampling of the sound field. According to the Nyquist’s
criterion, the number of microphones must be at least twice
as high as the highest spinning mode in the acoustic field. The
second difficulty arises if the background noise is high. Some
actual spinning modes may be overwhelmed by spurious modes.
A suitable method to improve the signal to noise ratio (S/N)
is needed. The gains in (S/N) of several methods have been
compared in a previous work using numerical simulations and
mode measurements in a nozzle of a Turbomeca engine.*

The aim of this article is to derive a new analysis technique
from method 4 in order to solve the above problem. The
article begins with a brief theoretical review of methods 1-4
(Sec. II). Section III is devoted to the description of a thresh-
old method (method 5). It adds coherently the cross spectral
matrix terms due to the acoustic field, and incoherently those
due to the background noise terms. The drawback of method
4 is thus suppressed. It is well known that the quality of the
results provided by a threshold method depends on the cri-
terion chosen for the definition of an appropriate threshold.
The calculation of an optimum threshold by an iterative tech-
nique (method 6} is also proposed in Sec. I1I. The six methods
are compared by numerical simulations in Sec. I'V.

Tests were performed in May 1986 in the Turbomeca out-
door facility at Pau-Uzein. A cross section of a TM333 tur-
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Microphone 1

y{t.6j) = s(t,6) + n(t,6)or
Y(f.0) = S(f,6) + N(f6)

Fig. 1 Array of fixed equidistant microphones for spinning modes
analysis.

boshaft engine nozzle was equipped with eight flush-mounted
probes, every 45 deg. The results obtained with methods 1,
2, 3, and 6 are presented in Sec. V.

II. Theoretical Background

The four methods studied in Ref. 4 are based on the cross-
spectral matrix of the measured signals. The calculation of
this matrix and a short theoretical background of these meth-
ods are presented in this section.

A. Cross-Spectral Matrix

Measurements are made using an array of J fixed micro-
phones flush-mounted on the wall of a cylindrical duct cross
section, as shown in Fig. 1. The time signal y(¢, 6,) measured
by a microphone at angle 6, is written

v(t, 8,) = s(t, 6) + n(t, 6)) €]
The Fourier transform in the frequency domain is
Y(f. 6) = S(f, 6) + N(f, 6) @)

A subscript [ should be introduced in all the above notations
because the Fourier transforms are computed on data block
intervals (! — )T < T <IT (I = 1to L), where T is greater
than the maximum period under study (the frequency reso-
lution is Af = 1/T)

Let us consider the column matrix

Y.(f. 0)
v = |78

Y/, 6,)

Y,(f) is assumed to be stationary. The cross-spectral matrix
of Y,(f) is evaluated by performing a statistical average on L
data blocks:

PP = P ¥ = lim S YD) ()

B. Methods 1 and 2

Method 1 is conventional for computing the angular wave
number spectra from I'y(f). The wave number spectrum at f
is given by

exp(imé,)

. 1 imé,

O,(fym) = U Ty (f) U, withU =~ e"p(’:’"@ (4)
exp(fmf),)

Two general hypotheses are assumed to determine the gain

in (S/N) of the method: 1) the background noise on the mi-
crophones is uncorrelated with the acoustic field:

(/S5 ) NI(f, 6:)) = 0 ©)

2) the background noises at two different angles are also
uncorrelated. This means that the spacing between micro-
phones is sufficiently large:

(NS, 6)-NI(f, 6,)) = () (0)

Taking these two hypotheses into account, the cross-spectral
matrix is written

Iy(f) = Is(f) + Dy(f) %
where
S(f. 6,)
N = S-S, with s, = [0
S(f. )

and I'y(f) = [o*(f)-1] is a diagonal noise matrix. The input
(S/N) is

(SIN) = Tr[C(HVTITN(f)] = 2 S,(H) [Ie(f) )
where

S//(f) - <Sl(f, 0;)51(](7 0,’»
After data processing, the output (S/N) is

O(fim)  (IS(F m)]?)

Now =4 (7om) = T ®
The gain in (S/N) is defined as
G(fs m) = (SN)our/(S/N) i (10)

If there is a single mode m,, in the acoustic pressure, then
J
Zl S;(f) = JISAf, mo)|?), (11)
=

G, =JorG,(dB) = 10log G, = 10logJ (12)

This relation shows that the gain in (S/N) depends only on
J. Large arrays are faced with complex technical problems:
ducts of small size, signal conditioning, calibration, and re-
cording. Thus, J is generally small, so that a large background
noise reduction cannot be achieved. As a consequence, this
method is not suitable for the modal analysis of a very noisy
acoustic field.

The relation [Eq. (7)] shows that the background noise
terms are only diagonal. The limitation in gain G, is in fact
due to these terms, and any improvement in the gain G,
requires the removal of the additive noise power spectral
density (PSD) o3(f) (j = 1,2, ...,J)in T'y(f). This may
be achieved by a three signal-coherence technique.®¢ Let us
consider the signals measured at angles 6, 6,, 6,:

Y(f. 8) = SAf, 8) + N(f, 6) for 6 = 6§, 6, and 6,
The coherent diagonal term j of the cross-spectral matrix is

YilH) - Y., (f)

Vi) = =

(13)
where

Y, (f) = Y[, 6,) Y(f. 8,)) (14)
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Taking into account the hypotheses (5) and (6), Eq. (13) can
be written

‘Sjk(f) : Su/(f)

vih =25 A (1)

Background noise is clearly removed. Y, (f) (j = 1,2,. . .,
J) is replaced by Y4(f) on the diagonal of I',(f). We obtain
a new matrix I'¢.(f) without the noise terms. This is used in
method 2:

O.(f,m) = U -I's(f)-U (16)

This method would be perfect if the actual cross-spectral
matrix were known (i.e., computed on an infinite number of
data blocks). In practice, it is estimated by

PAF) = AN () = T 2 VDV (D)

i.e., by computing Eq. (3) with a finite number L of data
blocks. In this case, Egs. (5) and (6) are not strictly valid,
and T',(f) contains diagonal and nondiagonal noise terms.
These nondiagonal terms are due to an estimation error in
the cross-spectral components Y, (f). The variance of Y,;.(f)
is given by

oy (f) =AY, (f) = V(NP = (VL (18)

It appears that the error decreases as V'L increases. The
estimation errors are similar to those in Y,.(f), since Y.(f)
is deduced from the Y.(f). The noise PSD is thus divided
by VL. Thus, this attractive method provides an improve-
ment in (S/N) gain only equal to

G, (dB) = G, (dB) + 10 log VL = 10 log(/\VL)  (19)

As a consequence, the gain G, is only slightly increased, even
for a large value of L.

C. Methods 3 and 4

The nondiagonal noise terms of the matrix, which were
previously negligible, become predominant since the noise
PSDs o{(f) (j = 1.2, ..., J) have been removed in the
['(f) formula. These residual noise terms must now be re-
duced to further improve the gain G,. This is a simple way
of achieving this.

Let us first modify each line of I'.(f) in order to obtain a
new matrix:

(/)
P = | ")

W,(f)

where the line vector W,(f) corresponds to the angular evo-
lution of the cross-spectral densities computed between a ref-
erence signal at angle 6, = 27r(j — 1)/, and the other signals
at locations ¢, = 6, — 6, (k =j+ 1,...,J+j— 1)

The wave number spectrum can be calculated with any of
line vector of 'y, (f)' * using the following relation:

Di(f. m) = U WD PIT5(S) (20)

This is similar to the data processing technique using a fixed
and a moving microphone. The gain in (S/N), G5, for method
3is limited by the errors in the estimation of the cross-spectral
densities. As a consequence, G, is of the same order as G,.

The coherence features of the acoustic field can now be
used to reduce the residual noise in I'y(f) by averaging the
terms in each of its columns:

W
> i(f)

W)y = % = VY(F)

21

This provides a reduction of the noise variance by a factor J.
Method 4 leads to

D, (fom) = U (W(f))|? (22)
Its gain in (S/N) is the highest one:
G,(dB) = 10 log(J>V/L) (23)

However, method 4 has a major drawback. It is able to
characterize quantitatively only the acoustic modes whose terms
are in phase in each column of the matrix 'y (f). The am-
plitudes of the other acoustic modes are more or less under-
predicted, their terms being averaged incoherently in (W(f)),.
In other words, these modes are not processed as signal, but
as noise.

III. Threshold Modal Analysis Methods

A. Need for a Threshold Method

As explained above, the drawback of method 4 arises in
the calculation of the line matrix (W(f)),. Thus, the acoustic
terms must be put in phase in each column of [',(f) before
calculating (W(f)),. This operation cannot be carried out with-
out the knowledge of the acoustic terms in each vector W,(f)
of I'y,(f). There is no simple means to separate the acoustic
and noise terms in the W,(f) vectors, and it remains difficult
to overcome the drawback of method 4.

Let us first define the following matrix:

w,(f, m)
W(fmy = |
w(f. m)
where
w(f.m) = U~ W(fINVY; @4

denotes the angular Fourier transform of the normalized line
vector W,(f) of I',,(f). Equation (20) becomes

®L(f, m) = |e(f. m)]? (25)
Method 4’ yields

Ll m), = 5 2w m)
26)

®.(f, m) = [{e(f, m)),

Due to the linearity of the Fourier transform

Pu(f, m) = @(f. m) @7

It is clear that the problem encountered in method 4 for
the calculation of (W(f)), [see after Eq. (23)] also appears
when computing (e(f, m)),. The acoustic terms that are not
in phase in the columns of W(f, m) are incoherently averaged
in {e(f, m)),. However, it is now possible to separate the
acoustic and noise terms in the vectors @,(f, m) (j = 1, 2,
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..., J). More precisely, each vector w,(f, m) [Eq. (2)] can
be split into two vectors:

w?(f, m) for m € M; (acoustic vector)

w™(f, m) for m € M, (noise vector) (28)

wf, m) = {

The coherent addition of the acoustic terms and the inco-
herent addition of the noise terms may be then done by cal-
culating

2 w/(f.m) (29

=

('(f, m)), =
with
w/(f, m)

_ {IRe[w;"(ﬁ m)]| + i|Im[w(f, m)]| for m € M
T oM, m) form € My

It must be noticed that the real and imaginary parts of the
vector @} (f, m) are positive since they are absolute values.
As a consequence, they are coherently added in (e’ (f, m)),.
On the contrary, noise terms are incoherently added in (&' (f,
m)y, as the real and the imaginary parts of these components
do not have the same sign in each @ (f, m) vector.

B. Hypotheses

One of the two sets M or M,, must be found to calculate
the line matrix (@' (f, m)),. This can be achieved by a threshold
method. It is based on three hypotheses concerning the am-
plitudes of the acoustic and of the noise modes.

Hypothesis 1: The amplitudes of the acoustic modes are
assumed to be deterministic. They are correctly predicted by
method 3 [Eq. (25)] with any e,(f, m) vector of W(f, m):

Vme M,V jj, e, =lef,m)]> (30)
This relation allows to write

Vm€E M, Vi |a(f, M = (e(f, m[*), (1)

where
otf, mPy, = 5 3 o, m:

j—1

Hypothesis 2: The amplitudes of the noise modes are as-
sumed to be random. Therefore, their module calculated by
method 3 depends on the choice of the vector e,(f, m):

w,(f, m)|* # |eo(f, m)|*  (32)

Hypothesis 3: Let us call m, the noise mode having the
highest mean value

< | w(f’ m")
ool m)1 = 5 3 o m)

VmeMy,3j+ ],

2), by method 3
; DYy (33)

2

This implies the following relation:
Vme My, Im, (o(f, m)]?), = (o(f, M), (34)
The gain in (S/N)G; (dB) in method 3 is assumed to be suf-

ficiently large to allow a reduction of each amplitude |w,(f,
m)? (G =1,2,...,J) for noise mode m,, such that

(o(f. m)P), > (e(f, m)]%), (35)

where m, is the acoustic mode with the lowest mean value.

Using this relation and Eqs. (31) and (35), it is possible to
write

Vm €& M,V j, lao(f,m)]> > {|o(f,m)[), (36)

In other words, the mean value of any noise mode is as-
sumed to be smaller than the mean value of any acoustic
mode. Nevertheless, the amplitudes of all the noise modes
are not assumed to be smaller than the amplitudes of all
acoustic modes.

Hypotheses 1 [Egs. (30) and (31)] and 2 [Eq. (32)] show
that the sets M and M, can be determined by calculating the
variance of the mode amplitudes provided by method 3 [Eq.
(25)] on each vector w,(f, m) of W(f, m):

1 1< :
ar(f) = ;/; le;(f, m)|* — j; |w,(f, m)|?
mz—é,. .,+%~1 37)

It is easy to show that

(38)

o2(f) = Oform € M
o2(f) # Oform € M,

It appears that the sets M and M, can be found by per-
forming a simple test on the nullity of ¢2,(f). Nevertheless,
o2,(f) is never equal to zero in practice, even if the variance
on the acoustic mode amplitudes is smaller than the variance
on the noise mode amplitudes. In fact, for the acoustic modes,
a2,(f) depends on 1) the numerical accuracy of the computers
and 2) the angular structure of the background noise. If it has
a broadband angular spectrum, its modes can corrupt the
acoustic mode amplitude in a nonuniform manner. Therefore,
the determination of M and M, cannot be conveniently car-
ried out using a simple test on the value of a2,(f).

C. Numerical Implementation of the Threshold Method
{(Method 5)

As mentioned previously, the sets M and M, can be ob-
tained by a threshold method. Equation (36) has to be verified
to apply this method. This condition is satisfied if the varia-
tions of the acoustic mode amplitudes obtained using method
3 [Eq. (25)] are not too large. Taking into account Egs. (32)
and (36), it is possible to find the two unknown sets by using
the following strategy:

{ifEl J, such as |@,(f, m)|? < {|w(f, m,}[?),, then m &€ M,
lfV], Iw/(f’ m)|2 > <|w(fs mn)l2>17 then m e MS

(39)
In this approach, it is necessary to determine the threshold

Ty = (Jeo(f. m)[?), (40)

The calculation of T cannot be done directly since the mean
value {|w(f, m,)|?), is generally unknown. However, it is
possible to define a minimum threshold value using hypothesis
3 [Eq. (33)]:

Tsmin = min{(|e(f, m)[2),
m=—(2), ...,+{/2) -1 (41)

It can be shown from this relation that the threshold T,
is generally smaller than T in Eq. (40). Thus, the set M of
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acoustic modes is completely determined using T, instead
of Ts. However, the threshold T, is not quite suitable for
finding all the modes belonging to M,. Some noise modes
may then be processed as acoustic modes in e/(f, m) [Eq.
(29)].

Tllle processing in the threshold method is based on Egs.
(39) and (41). Tt is built in three steps: the angular Fourier
transform of the vectors W,(f) (j = 1,2, ... ,J) (Eq. 24)
is computed to obtain the vectors w,(f, m); the mean value
(Eq. 29) is calculated with the vectors

" _ JIRe[ay(f, m)]| + i[Im[e(f, m)]| if ¥ j,
‘Mﬁm*%ﬁﬂmm%M@$}<rl

The noise mode amplitudes are set to zero in Eq. (42) since
their characterization has generally no interest in practice. At
last, the wave number spectrum of Y(f, #) is obtained by
calculating

S laf(f. m> (43)

o(fm) = (wEml, = 5 S

D. Iterative Threshold Method (Method 6)

The problem of determining a correct threshold T can be
conveniently solved by an iterative method. Equations (34)
and (35) give the basic algorithm of this method in four steps.
The first three steps are similar to those described previously
in method 5. They initiate the iterative process. At the first
iteration, the threshold is given by

T(1) = min{(|e(f, m) %)}
m= —J/2),...,+J/2) =1 (44)

In the fourth step, further values of threshold T(i) (i =
1,2,...)are determinated using the mean value (| (f, m)|?),
of the noise modes found in the third step. Taking into account
hypothesis 3 [Eq. (36)] the following threshold is obtained at
iteration {:

Ts()) = max{{le(f. M]3}, meEMy (45

The iterative process is performed on the results of the third
step. New noise modes can be found, until the threshold Ts(i
+ 1) = Ty(i). Due to hypothesis 3 [Eq. (35)], the threshold
must remain smaller than the acoustic mode myg having the
smallest PSD. In practice, the number of iterations is much
smaller than the number of modes calculated (i.e., the number
of microphones).

IV. Numerical Simulations

A. Simulation A

The previous discussions are illustrated by the numerical

simulation presented in Ref. 4. An acoustic field s(¢, ), at a
single frequency f = 1 kHz, consists in three modes of dif-
ferent amplitudes: 1) m, = +2 (100 dB), 2) m, = —4 (90
dB), and 3) m; = +5 (70 dB).

The background white noise level is 95 dB in each frequency
band Af (here, Af = 39 Hz), and at every location §;. Mode
m, is thus 5 dB above the background noise, while modes m,
and m; are, respectively, 5 and 25 dB below it. Wave number
spectra are computed in the interval —12 <= m = +11, as-
suming J = 24 measurements points. All the results are com-
puted using L = 100 statistical averages.

The spectrum of microphone 1 is displayed in Fig. 2 (the
decrease above 1500 Hz is due to the anti-aliasing filter). The
wave number spectra obtained at 1 kHz by various methods
are shown in Figures 3a—3f.

1) Method 1 (Fig. 3a), modes m, and m, are well-retrieved
with their exact amplitudes. Mode m; is totally buried in the
background noise. This result is consistent with the theory
[Eq. (12)]. o

2) Method 2 (Fig. 3b) finds three modes with their correct
amplitudes, but the amplitude of mode m; is of the same level
as the noise.

3) Using method 3 (Fig. 3c) the result is slightly better than
the previous one, but the mode m;, level remains quite similar
to the highest noise components.

o,(f, M > Ty (42)

S min

4) Using method 4 (Fig. 3d), mode m, is well-retrieved with
its correct amplitude. Mode m, clearly appears but its am-
plitude is wrong, and the mode m; is not found at all.

5) The threshold method (Fig. 3e) gives the three modes
with their correct amplitudes and the noise is completely can-
celed except for the noise mode m = —9. This mode is not
removed in this case because T, 1s too small compared to
T [see below Eq. (41)].

6) The result in Fig. 3f obtained using method 6 after three
iterations is identical to Fig. 3e, but the noise mode m = —9
is eliminated by the iterative procedure.

B. Simulation B

It is known that any threshold method has some limits. This
is true for methods 5 and 6. Both methods remove noise
modes, but they can also remove some acoustic modes, if the
background noise is very high, more precisely if the mean
value of the acoustic modes is smaller than the threshold.
Simulation B corresponds to such a case. It is also used to
test the ability of methods 3, 5, and 6 to detect a greater
number of modes. There are six acoustic modes at 1 kHz: 1)
m, = —10(90dB), 2y m, = —7(75dB), 3) my = —3 (100
dB), 4) m, = —1 (65 dB), 5) m; = +2 (85 dB), 6) m, =
+5 (70 dB). The background noise is the same as in simulation
A. Thus, mode mj; is the only one above the background
noise, while modes m,, m., m,, ms, and m, are, respectively,
5, 20, 30, 10, and 25 dB below it.

1) Using method 3 (Fig. 4a), five among the six acoustic
modes clearly appear with their right amplitudes: m, = —10,
m, = —7,my= -3, ms= +2,m; = +5 Modem, = —1
is totally buried in the background noise.

2) Method 5 (Fig. 4b) enhances the five previous acoustic
modes since several noise modes are cancelled. It is also no-
ticed that mode m, = —1 has been eliminated, because its
mean value (|e(f, m,)|?), is smaller than the threshold T.,,..
found by this method.

3) Using method 6 (Fig. 4c), only the five acoustic modes
found by method 5 are left, and all the noise modes are

105
100+
951
901
85%
80+
75%
70% T
65

SPL (dB)

Sound pressure level,

1 | d
0 500 1000 1500 2000
Frequency, Hz

Fig. 2 Numerical simulation with three spinning modes: f = 1 kHz,
m, = +2(100dB), m, = —4 (90 dB), m; = +5 (70 dB). Background
noise: 95 dB, J = 24 measurement angles, L = 100 statistical averages.
Synthesized frequency spectrum of the input signal at each microphene
angles (resolution Af = 39 Hz).
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Fig. 4 Numerical simulation with six spinning modes: f = 1 kHz, m, = —10 (90 dB), m, = -7 (75 dB), m, = +3 (100 dB), m, = —1 (65

dB), m; = +2 (85 dB), and m, = +5 (70 dB). Background noise: 95 dB, J = 24 measurement angles, L = 100 statistical averages: a) method
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Fig. 5 Schematic view of the Turbomeca TM333 turboshaft engine.
Instrumented cross section (see Fig. 6).

canceled. Again, mode m, = —1 is not picked up because
the threshold used for the first iteration is the same as the
one found by method 5, and this level is too high compared
to (|@*(f, my)|?).

V. Spinning Mode Analysis in a Turboshaft
Engine Nozzle
Methods presented in the previous sections are applied to
measurements performed in the Turbomeca outdoor facility
at Pau-Uzein.” A nozzle cross section of a Turbomeca TM333
turboshaft engine (Fig. 5) was equipped with eight micro-
phones placed every 45 deg (Fig. 6). Additional details on

S
Downstream view

Fig. 6 Locations of the microphones on the TM333 nozzle wall, in
the cross section marked in Fig. 5 (the 3 struts every 120 deg are
located in a downstream section).
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Fig. 7 Frequency spectrum measured by microphone 1 in Fig. 6
(resolution Af = 39 Hz).
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Fig. 8 Wave number spectra in the frequency range of combustion noise, f = 273 Hz (Af = 39 Hz). Methods a) 1, b) 3, and c) iterative

threshold method 6.
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Fig. 9 Wave number spectra at the HP-turbine rotation frequency,
f = Nyp = 745 Hz (Af = 39 Hz): a) method 3 and b) iterative threshold
method 6.

the experimental setup can be found in Ref. 7. A test at the
takeoff power of a twin-engine aircraft (460 kW or 620 hp)
is discussed in this section. All the following results are ob-
tained using L. = 400 statistical averages.

A. Sound Pressure Level (SPL) Spectrum

The spectrum measured by microphone 1 in the 0-5 kHz
(Af = 39 Hz) frequency range is presented in Fig. 7. The low
frequencies (150—400 Hz) correspond to the combustion noise.
Tones are harmonics either of the high-pressure turbine ro-
tation speed (N, = 745 Hz), or of the low-pressure turbine
rotation speed (N, = 627 Hz). Harmonics of the two shaft
rotation speeds Ny, and N, p appear due to the fact that the
turbine stages are transonic, and thus emit multiple pure tones.*
The main noise source is related to the mean blade aerody-
namic loading. Theoretically, only one spinning mode is gen-
erated for each tone, and it is equal to the harmonic order
fIN (N stands for either Ny, or N ;). More precisely, the
values of m are positive for the LP-turbine tones and negative
for the HP-turbine tones since the two turbine rows are counter-
rotating.

B. Wave Number Spectra

The wave number spectra are computed for each frequency
band Af = 39 Hz for —4 = m = +3 (i.e., 128 analyses from
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Fig. 10 Wave number spectra at the first harmonic of HP-turbine
rotation frequency, f = 2Ny, = 1490 Hz (Af = 39 Hz): a) method 3
and b) iterative threshold method 6.

0 to 5 kHz). Results are only shown at three frequencies.
Data processing is limited to methods 1, 3, and 6 for the first
frequency and to methods 3 and 6 for the other two.

Figure 8 shows the analysis at 273 Hz (i.e., at the maximum
level of combustion noise). Only the mode m = 0 can prop-
agate at this frequency, which is below the cutoff frequency
of the first spinning mode. Using method 1 (Fig. 8a), plane
wave m = ( is about 10 dB above the background noise.
Noise level is reduced by 10 dB using method 3 (Fig. 8b). All
the modes are removed after three iterations using method 6
(Fig. 8c), except acoustic mode m = 0.

The wave number spectra at the high-pressure turbine ro-
tation frequency, f = Ny, = 748 Hz, is displayed in Figs. 9a
(method 3) and 9b (method 6). At this frequency the prop-
agating modes are lower than |m| = 2. Results are quite
similar by both methods. Mode mm = —1 is dominant, and it
is about 15 dB above the background noise. Noise modes are
not totaliy removed by method 6. This can be easily explained.
The threshold T4(1) (i.e., the mean value of mode m = —3,
which has been eliminated), in the first iteration is too small
to give more than one noise mode. Thus, T(1) = T(2) in
the second iteration, and this equality is the condition to stop
the iterative process (see Sec. I11.D).

Wave number spectra in Fig. 10 are computed to f = 2N,
= 1457 Hz. The background noise remains high in method
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3 (Fig. 10a), and the expected m = —~2 mode (see Sec. [V.A)
does not clearly appear. On the contrary, the spinning mode
m = —2is the only one left by method 6 (Fig. 10b) after five
iterations.

VI. Conclusions

Spinning mode analysis of very noisy acoustic fields requires
special methods with highly improved gain in (§/N). Without
any treatment, acoustic modes may be overwhelmed by spu-
rious noise modes in the results. Four methods studied in a
previous work have been briefly summarized in this article.
The method giving the best gain in (S/N) is misleading if the
acoustic field contains several spinning modes, because their
amplitude may be underpredicted.

A threshold technique is proposed to eliminate this draw-
back. It first involves an angular Fourier transform of each
line of the cross-spectral matrix. Then, the mean values of
the modes obtained by the previous step are calculated. Fi-
nally, modes with amplitude under a threshold (the lowest of
the mean amplitudes) are reduced to zero (noise modes),
while the others are coherently averaged (acoustic modes).

The threshold defined above is insufficient for a complete
cancellation of the noise modes, because it is generally too
low compared to the highest noise modes. This problem is
overcome by an iterative method. It consists in deducing, at
iteration (i + 1), a new threshold from the noise modes found
at the iteration (¢). The iterative process is pursued as long
as the threshold at iteration (i + 1) is higher than the threshold
at the iteration (i). It is stopped when the thresholds are equal
at iterations (i) and (i + 1). The quality of the results using
this method depends on the threshold T (1) determined at
the first iteration since the noise having the highest mean value
is unknown. T¢(1) has to be sufficiently high for finding sev-
eral noise modes, and thus, allow to perform more than one
iteration. Otherwise, all the noise mode may be not removed.

Numerical tests and experimental results from the TM333
show that the iterative threshold method yields the best result
when the above condition is respected.
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